Martes, Noviembre 26

Un estudio publicado en la revista Nature advierte que modelos de inteligencia artificial (IA) como ChatGPT, pese a su objetivo de alcanzar la “superinteligencia”, siguen siendo poco fiables, incluso en tareas simples. La investigación, liderada por Lexin Zhou y otros expertos de la Universidad Politécnica de Valencia y la Universidad de Cambridge, concluye que los errores de estos sistemas serán difíciles de eliminar por completo en el futuro.

Los modelos de lenguaje actuales tienden a mejorar en tareas complejas, pero fallan en las sencillas, señala Zhou. Este problema, que ya ha sido probado con ChatGPT-4 y otras herramientas, plantea serias dudas sobre la evolución de la IA. Hay algo incluso peor: los nuevos modelos no evitan tareas difíciles y, en lugar de reconocer sus limitaciones, utilizan mucho tiempo y recursos computacionales para intentar resolverlas, explica Zhou.

MIRA: Miles de médicos recurren a ChatGPT en los hospitales para responder a sus pacientes

José Hernández-Orallo, investigador y coautor del estudio, destaca que estos sistemas pueden resolver problemas matemáticos complejos, pero se equivocan en sumas simples. Esta discordancia entre lo que los humanos perciben como complicado y lo que resulta difícil para las IA agrava la situación. A medida que las expectativas sobre la IA crecen, los usuarios tienden a confiar menos en los sistemas para tareas básicas.

El artículo también subraya que estos modelos de lenguaje evitan cada vez más admitir errores. Esta “seguridad irreal” puede llevar a los usuarios a creer que las respuestas incorrectas son verdaderas, lo que aumenta la posibilidad de errores. Este fenómeno se agrava porque los modelos avanzados responden incluso cuando no deberían, en lugar de reconocer sus limitaciones.

Posibles soluciones

Para los autores del estudio, una solución posible para modelos de IA especializados en áreas sensibles, como la medicina, sería implementar mecanismos que les permitan rechazar responder a ciertas consultas. Sin embargo, hasta que se logre este nivel de autocontrol en las IA, los expertos llaman a concienciar sobre los riesgos de depender exclusivamente de la supervisión humana.

Pablo Haya, investigador del Laboratorio de Lingüística Informática de la Universidad Autónoma de Madrid, señaló, en declaraciones a SMC España, que el estudio “desafía la suposición de que escalar y ajustar los modelos de lenguaje siempre mejora su precisión”. Aunque las IA más avanzadas suelen ser más estables, también son propensas a cometer errores que pasan desapercibidos porque evitan no responder.

Un remedio temporal que proponen los investigadores es ajustar las preguntas hechas a la IA. “Preguntar varias veces o cambiar sutilmente el enunciado puede mejorar la respuesta”, explica Zhou. No obstante, esto transfiere al usuario la responsabilidad de evaluar la precisión de las respuestas, lo cual no es una solución definitiva.

El problema más preocupante de estos modelos es que buscan una “superinteligencia” capaz de resolver problemas que los humanos no pueden. Sin embargo, según Zhou y su equipo, el camino actual de desarrollo no llevará a una IA verdaderamente fiable. Incluso Ilya Sutskever, cofundador de OpenAI, admitió recientemente que el modelo actual está agotado y que se necesitan nuevas soluciones.

A pesar de sus limitaciones, estas IA aún pueden ser útiles en tareas donde no se requiere una precisión absoluta.Sin embargo, los usuarios deben asumir el riesgo de posibles errores.

Compartir
Exit mobile version